Transcriptome analyses of murine right and left maxilla-mandibular complex

小鼠左右上下颌骨复合体的转录组分析

阅读:6
作者:Jacqueline Crawford, Melissa Morawski, Steve Eliason, Samantha Wuebker, Eric Van Otterloo, Huojun Cao, Lina Moreno, Brad Amendt, Shankar Rengasamy Venugopalan

Conclusions

We identified significant differential expression of transcripts between E14.5 and 18.5 murine right and left MxMn complexes. These findings when extrapolated to humans, they may provide a biological basis for facial asymmetry. Further experiments are required to validate these findings in murine models with craniofacial asymmetry.

Methods

The E14.5 and 18.5 embryos were harvested and hemi-sectioned the MxMn complexes into right and left halves in the mid-sagittal plane. We isolated total RNA using Trizol reagent and further purified using the RNA-easy kit (QIAGEN). We confirmed equal expression of house-keeping genes in right and left halves using RT-PCR and then performed paired-end whole mRNA sequencing in LC Sciences (Houston, TX) followed by differential transcript analyses (>1 or <-1 log fold change; p < .05; q < .05; and FPKM >0.5 in 2/3 samples). The Mouse Genome Informatics and Online Mendelian Inheritance in Man databases as well as gnomAD constraint scores were used to prioritize differentially expressed transcripts.

Objective

The objective of the study was to investigate differential gene expression between murine right and left maxilla-mandibular (MxMn) complexes. Setting and sample population: Wild-type (WT) C57BL/6 embryonic (E) day 14.5 (n = 3) and 18.5 (n = 3) murine embryos.

Results

There were 19 upregulated and 19 downregulated transcripts at E14.5 and 8 upregulated and 17 downregulated transcripts at E18.5 time-points. These differentially expressed transcripts were statistically significant and shown to be associated with craniofacial phenotypes in mouse models. These transcripts also have significant gnomAD constraint scores and are enriched in biological processes critical for embryogenesis. Conclusions: We identified significant differential expression of transcripts between E14.5 and 18.5 murine right and left MxMn complexes. These findings when extrapolated to humans, they may provide a biological basis for facial asymmetry. Further experiments are required to validate these findings in murine models with craniofacial asymmetry.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。