Background
Immune checkpoint inhibition is an established treatment in programmed death-ligand 1 (PD-L1)-positive metastatic triple-negative (TN) breast cancer (BC). However, the immune landscape of breast cancer brain metastasis (BCBM) remains poorly defined. Materials and
Conclusion
This study highlights the immunological differences between primary BCs and BCBMs and the potential importance of ARG2 expression in T-cell depletion and clinical outcome.
Methods
The tumour-infiltrating lymphocytes (TILs) and the messenger RNA (mRNA) levels of 770 immune-related genes (NanoString™, nCounter™ Immuno-oncology IO360) were assessed in primary BCs and BCBMs. The prognostic role of ARG2 transcripts and protein expression in primary BCs and its association with outcome was determined.
Results
There was a significant reduction of TILs in the BCBMs in comparison to primary BCs. 11.5% of BCs presented a high immune infiltrate (hot), 46.2% were altered (immunosuppressed/excluded) and 34.6% were cold (no/low immune infiltrate). 3.8% of BCBMs were hot, 23.1% altered and 73.1% cold. One hundred and twelve immune-related genes including PD-L1 and CTLA4 were decreased in BCBM compared to the primary BCs (false discovery rate <0.01, log2 fold-change >1.5). These genes are involved in matrix remodelling and metastasis, cytokine-chemokine signalling, lymphoid compartment, antigen presentation and immune cell adhesion and migration. Immuno-modulators such as PD-L1 (CD274), CTLA4, TIGIT and CD276 (B7H3) were decreased in BCBMs. However, PD-L1 and CTLA4 expression was significantly higher in TN BCBMs (P = 0.01), with CTLA4 expression also high in human epidermal growth factor receptor 2-positive (P < 0.01) compared to estrogen receptor-positive BCBMs. ARG2 was one of four genes up-regulated in BCBMs. High ARG2 mRNA expression in primary BCs was associated with worse distant metastasis-free survival (P = 0.038), while ARG2 protein expression was associated with worse breast-brain metastasis-free (P = 0.027) and overall survival (P = 0.019). High transcript levels of ARG2 correlated to low levels of cytotoxic and T cells in both BC and BCBM (P < 0.01).
