The Effect of IFT80 Deficiency in Osteocytes on Orthodontic Loading-Induced and Physiologic Bone Remodeling: In Vivo Study

骨细胞中 IFT80 缺乏对正畸负重诱导和生理性骨重建的影响:体内研究

阅读:8
作者:Hyeran Helen Jeon, Jessica Kang, Jiahui Madelaine Li, Douglas Kim, Gongsheng Yuan, Nicolette Almer, Min Liu, Shuying Yang

Abstract

Osteocytes are the main mechanosensory cells during orthodontic and physiologic bone remodeling. However, the question of how osteocytes transmit mechanical stimuli to biological responses remains largely unanswered. Intraflagellar transport (IFT) proteins are important for the formation and function of cilia, which are proposed to be mechanical sensors in osteocytes. In particular, IFT80 is highly expressed in mouse skulls and essential for ciliogenesis. This study aims to investigate the short- and long-term effects of IFT80 deletion in osteocytes on orthodontic bone remodeling and physiological bone remodeling in response to masticatory force. We examined 10-week-old experimental DMP1 CRE+.IFT80f/f and littermate control DMP1 CRE-.IFT80f/f mice. After 5 and 12 days of orthodontic force loading, the orthodontic tooth movement distance and bone parameters were evaluated using microCT. Osteoclast formation was assessed using TRAP-stained paraffin sections. The expression of sclerostin and RANKL was examined using immunofluorescence stain. We found that the deletion of IFT80 in osteocytes did not significantly impact either orthodontic or physiologic bone remodeling, as demonstrated by similar OTM distances, osteoclast numbers, bone volume fractions (bone volume/total volume), bone mineral densities, and the expressions of sclerostin and RANKL. Our findings suggest that there are other possible mechanosensory systems in osteocytes and anatomic limitations to cilia deflection in osteocytes in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。