Adapted Boolean network models for extracellular matrix formation

适用于细胞外基质形成的布尔网络模型

阅读:7
作者:Johannes Wollbold, René Huber, Dirk Pohlers, Dirk Koczan, Reinhard Guthke, Raimund W Kinne, Ulrike Gausmann

Background

Due to the rapid data accumulation on pathogenesis and progression of chronic inflammation, there is an increasing demand for approaches to analyse the underlying regulatory networks. For example, rheumatoid arthritis (RA) is a chronic inflammatory disease, characterised by joint destruction and perpetuated by activated synovial fibroblasts (SFB). These abnormally express and/or secrete pro-inflammatory cytokines, collagens causing joint fibrosis, or tissue-degrading enzymes resulting in destruction of the extra-cellular matrix (ECM).We applied three

Conclusion

The newly developed method successfully and iteratively integrated expert knowledge at different steps, resulting in a promising solution for the in-depth understanding of regulatory pathways in disease dynamics. The knowledge base containing all the temporal rules may be queried to predict the functional consequences of observed or hypothetical gene expression disturbances. Furthermore, new hypotheses about gene relations were derived which await further experimental validation.

Results

First, we extracted literature information to develop an interaction network containing 18 genes representing ECM formation and destruction. Subsequently, we constructed an asynchronous Boolean network with biologically plausible time intervals for mRNA and protein production, secretion, and inactivation. Experimental gene expression data was obtained from SFB stimulated by TGFbeta1 or by TNFalpha and discretised thereafter. The Boolean functions of the initial network were improved iteratively by the comparison of the simulation runs to the experimental data and by exploitation of expert knowledge. This resulted in adapted networks for both cytokine stimulation conditions. The simulations were further analysed by the attribute exploration algorithm of FCA, integrating the observed time series in a fine-tuned and automated manner. The resulting temporal rules yielded new contributions to controversially discussed aspects of fibroblast biology (e.g., considerable expression of TNF and MMP9 by fibroblasts stimulation) and corroborated previously known facts (e.g., co-expression of collagens and MMPs after TNFalpha stimulation), but also revealed some discrepancies to literature knowledge (e.g., MMP1 expression in the absence of FOS).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。