In Vitro Superharmonic Contrast Imaging Using a Hybrid Dual-Frequency Probe

使用混合双频探头进行体外超谐波对比成像

阅读:8
作者:Emmanuel Cherin, Jianhua Yin, Alex Forbrich, Christopher White, Paul A Dayton, F Stuart Foster, Christine E M Démoré

Abstract

Superharmonic imaging is an ultrasound contrast imaging technique that differentiates microbubble echoes from tissue through detection of higher-order bubble harmonics in a broad frequency range well above the excitation frequency. Application of superharmonic imaging in three dimensions allows specific visualization of the tissue microvasculature with high resolution and contrast, a technique referred to as acoustic angiography. Because of the need to transmit and receive across a bandwidth that spans up to the fifth harmonic of the fundamental and higher, this imaging approach requires imaging probes comprising dedicated transducers for transmit and receive. In this work, we report on a new dual-frequency probe including two 1.7-MHz rectangular transducers positioned one on each side of a 20-MHz 256-element array. Finite element modeling-based design, fabrication processes and assembly of the transducer are described, as is integration with a high-frequency ultrasound imaging platform. Dual-frequency single-plane-wave imaging was performed with a microbubble contrast agent in flow phantoms and compared with conventional high-frequency B-mode imaging, and resolution and contrast-to-tissue ratio were quantified. This work represents an intermediate but informative step toward the development of dual-frequency imaging probes based on array technology, specifically designed for clinical applications of acoustic angiography.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。