Lipid-soluble cigarette smoking particles induce expression of inflammatory and extracellular-matrix-related genes in rat cerebral arteries

脂溶性香烟烟雾颗粒诱导大鼠脑动脉炎症和细胞外基质相关基因的表达

阅读:10
作者:Petter Vikman, Cang-Bao Xu, Lars Edvinsson

Aims

Cigarette smoking is one of the strongest risk factors for stroke. However, the underlying molecular mechanisms that smoke leads to the pathogenesis of stroke are incompletely understood.

Conclusions

DSP induces cerebral vessel inflammation with activation of p38 MAPK inflammatory signal and the downstream transcriptional factors (ATF-2 and Elk-1) in parallel with enhanced extracellular-matrix-related gene transcription and increased AT(1) receptor expression in the cerebral arteries, which are key events in stroke pathogenesis.

Methods

Dimethyl sulfoxide (DMSO)-soluble (lipid-soluble) cigarette smoking particles (DSP) were extracted from cigarette smoke (0.8 mg nicotine per cigarette; Marlboro). Rat cerebral arteries were isolated and organ cultured in the presence of DSP (0.2 microl/ml, equivalent to the plasma level in smokers) for 24 h. The expression of matrix metalloproteinase 9 and 13 (MMP9 and MMP13), angiotensin receptor 1 and 2 (AT(1) and AT(2)), interleukin 6 and inducible nitric oxide synthase (iNOS) were investigated at mRNA level by real-time PCR and/or at protein level by immunohistochemistry. In addition, the activity of three mitogen-activated protein kinases (p38, ERK 1/2 and SAPK/JNK) and their downstream transcription factors (ATF-2, Elk-1 and c-Jun) were examined.

Results

We observed that compared with control (DMSO-treated cerebral arteries), the cerebral arteries treated by DSP exhibited enhanced expression of MMP13 and AT(1) receptors, but not of AT(2) receptors, at both mRNA and protein levels, suggesting that a transcriptional mechanism is most likely involved in the DSP effects. This is further supported by the findings that DSP induced phosphorylation of p38 mitogen-activated protein kinases inflammatory signal protein in parallel with activation of its downstream transcription factor ATF-2 and Elk-1. However, ERK 1/2 and SAPK/JNK activities were markedly expressed in the control (organ culture per se with DMSO), and DSP failed to further enhance the activation of ERK 1/2 and SAPK/JNK in the cerebral arteries. Conclusions: DSP induces cerebral vessel inflammation with activation of p38 MAPK inflammatory signal and the downstream transcriptional factors (ATF-2 and Elk-1) in parallel with enhanced extracellular-matrix-related gene transcription and increased AT(1) receptor expression in the cerebral arteries, which are key events in stroke pathogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。