Evaluation of dapsone and its synthetic derivative DDS‑13 in cancer in vitro

氨苯砜及其合成衍生物 DDS-13 在体外抗癌效果评估

阅读:7
作者:Griselda A Cabral-Pacheco, Virginia Flores-Morales, Idalia Garza-Veloz, Miriam Damián-Sandoval, Rosa B Martínez-Flores, María C Martínez-Vázquez, Iván Delgado-Enciso, Iram P Rodriguez-Sanchez, Margarita L Martinez-Fierro

Abstract

The present study highlighted the repositioning of the drug dapsone (DDS) for cancer therapy. Due to its mechanism of action, DDS has a dual effect as an antibiotic and as an anti-inflammatory/immunomodulator; however, at high doses, it has important adverse effects. The derivative DDS-13 [N,N'-(sulfonyl bis (4,1-phenylene)) dioctanamide] was synthesized through an N-acylation reaction to compare it with DDS. Its cytotoxic effects in cancer cells (DU145 and HeLa) and non-cancer cells (HDFa) were observed at concentrations ranging 0.01-100 µM and its physicochemical/pharmacokinetic properties were analyzed using the SwissADME tool. The objectives of the present study were to evaluate the anticancer activity of both DDS and DDS-13 and to identify the physicochemical and pharmacokinetic properties of DDS-13. The results showed that DDS-13 presented a cytotoxic effect in the DU145 cell line (IC50=19.06 µM), while DDS showed a cytotoxic effect on both the DU145 (IC50=11.11 µM) and HeLa (IC50=13.07 µM) cell lines. DDS-13 appears to be a good cytotoxic candidate for the treatment of prostate cancer, while DDS appears to be a good candidate for both cervical and prostate cancer. Neither candidate showed a cytotoxic effect in non-cancerous cells. The different pharmacokinetic properties of DDS-13 make it a new candidate for evaluation in preclinical models for the treatment of cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。