Modeling MEN1 with Patient-Origin iPSCs Reveals GLP-1R Mediated Hypersecretion of Insulin

利用患者来源的 iPSC 建模 MEN1 揭示了 GLP-1R 介导的胰岛素分泌过多

阅读:6
作者:Ziqi Cheng, Dongsheng Guo, Aynisahan Ruzi, Tingcai Pan, Kai You, Yan Chen, Xinping Huang, Jiaye Zhang, Fan Yang, Lizhi Niu, Kecheng Xu, Yin-Xiong Li

Abstract

Multiple endocrine neoplasia type 1 (MEN1) is an inherited disease caused by mutations in the MEN1 gene encoding a nuclear protein menin. Among those different endocrine tumors of MEN1, the pancreatic neuroendocrine tumors (PNETs) are life-threatening and frequently implicated. Since there are uncertainties in genotype and phenotype relationship and there are species differences between humans and mice, it is worth it to replenish the mice model with human cell resources. Here, we tested whether the patient-origin induced pluripotent stem cell (iPSC) lines could phenocopy some defects of MEN1. In vitro β-cell differentiation revealed that the percentage of insulin-positive cells and insulin secretion were increased by at least two-fold in MEN1-iPSC derived cells, which was mainly resulted from significantly higher proliferative activities in the pancreatic progenitor stage (Day 7-13). This scenario was paralleled with increased expressions of prohormone convertase1/3 (PC1/3), glucagon-like peptide-1 (GLP-1), GLP-1R, and factors in the phosphatidylinositol 3-kinase (PI3K)/AKT signal pathway, and the GLP-1R was mainly expressed in β-like cells. Blockages of either GLP-1R or PI3K significantly reduced the percentages of insulin-positive cells and hypersecretion of insulin in MEN1-derived cells. Furthermore, in transplantation of different stages of MEN1-derived cells into immune-deficient mice, only those β-like cells produced tumors that mimicked the features of the PNETs from the original patient. To the best of our knowledge, this was the first case using patient-origin iPSCs modeling most phenotypes of MEN1, and the results suggested that GLP-1R may be a potential therapeutic target for MEN1-related hyperinsulinemia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。