Intervertebral range of motion characteristics of normal cervical spinal segments (C0-T1) during in vivo neck motions

正常颈椎节段 (C0-T1) 在体内颈部运动过程中的椎间运动范围特征

阅读:5
作者:Chaochao Zhou, Haiming Wang, Cong Wang, Tsung-Yuan Tsai, Yan Yu, Peter Ostergaard, Guoan Li, Thomas Cha

Abstract

The in vivo intervertebral range of motion (ROM) is an important predictor for spinal disorders. While the subaxial cervical spine has been extensively studied, the motion characteristics of the occipito-atlantal (C0-1) and atlanto-axial (C1-2) cervical segments were less reported due to technical difficulties in accurate imaging of these two segments. In this study, we investigated the intervertebral ROMs of the entire cervical spine (C0-T1) during in vivo functional neck motions of asymptomatic human subjects, including maximal flexion-extension, left-right lateral bending, and left-right axial torsion, using previously validated dual fluoroscopic imaging and model registration techniques. During all neck motions, C0-1, similar to C7-T1, was substantially less mobile than other segments and always contributed less than 10% of the cervical rotations. During the axial rotation of the neck, C1-2 contributed 73.2 ± 17.3% of the cervical rotation, but each of other segments contributed less than 10% of the cervical rotation. During both lateral bending and axial torsion neck motions, regardless of primary or coupled motions, the axial torsion ROM of C1-2 was significantly greater than its lateral bending ROM (p < 0.001), whereas the opposite differences were consistently observed at subaxial segments. This study reveals that there are distinct motion patterns at upper and lower cervical segments during in vivo neck motions. The reported data could be useful for the development of new diagnosis methods of cervical pathologies and new surgical techniques that aim to restore normal cervical segmental motion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。