Torsional Vibrations in the Resonance of High-Speed Rotor Bearings Reduced by Dynamic Properties of Carbon Fiber Polymer Composites

碳纤维聚合物复合材料的动态特性可降低高速转子轴承共振中的扭转振动

阅读:5
作者:Zuzana Murčinková, Jozef Živčák, Dominik Sabol

Abstract

The present study deals with the harmful torsional resonance vibrations of textile rotor bearings, the amplitudes of which are reduced mainly by the use of high-capacity damping materials, characterized by an internal hierarchical structure and macroshape, added into the machine mechanical system. The additional materials are polymer matrix composites reinforced either by carbon nanofibers or carbon chopped microfibers and either aramid or carbon continuous fibers. The macroshape is based on a honeycomb with internal cavities. Torsional vibrations arise in mechanical systems as a result of fluctuations in the low-level pressing load of the flat belt driving the rotor-bearing pin and the changing of kinematic conditions within it, which, in the resonance area, leads to cage slip and unwanted impulsive torsional vibrations. Moreover, this occurs during high-frequency performance at around 2100 Hz, i.e., 126,000 min-1. The condition, before the redesign, was characterized by significantly reduced textile rotor-bearing life due to significant impulse torsional vibrations in the resonance area. The study showed a significant reduction in average and maximum torsional amplitudes in the resonance area by 33% and 43%, respectively. Furthermore, the paper provides visualization of the propagation of a stress wave at the microscale obtained by the explicit finite element method to show the dispersion of the wave and the fibers as one of the sources of high damping.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。