Genetic mechanisms underlying the pathogenicity of cold-stressed Salmonella enterica serovar typhimurium in cultured intestinal epithelial cells

冷应激鼠伤寒沙门氏菌在培养的肠上皮细胞中致病性的遗传机制

阅读:6
作者:Jigna Shah, Prerak T Desai, Bart C Weimer

Abstract

Salmonella encounters various stresses in the environment and in the host during infection. The effects of cold (5°C, 48 h), peroxide (5 mM H2O2, 5 h) and acid stress (pH 4.0, 90 min) were tested on pathogenicity of Salmonella. Prior exposure of Salmonella to cold stress significantly (P < 0.05) increased adhesion and invasion of cultured intestinal epithelial (Caco-2) cells. This increased Salmonella-host cell association was also correlated with significant induction of several virulence-associated genes, implying an increased potential of cold-stressed Salmonella to cause an infection. In Caco-2 cells infected with cold-stressed Salmonella, genes involved in the electron transfer chain were significantly induced, but no simultaneous significant increase in expression of antioxidant genes that neutralize the effect of superoxide radicals or reactive oxygen species was observed. Increased production of caspase 9 and caspase 3/7 was confirmed during host cell infection with cold-stressed Salmonella. Further, a prophage gene, STM2699, induced in cold-stressed Salmonella and a spectrin gene, SPTAN1, induced in Salmonella-infected intestinal epithelial cells were found to have a significant contribution in increased adhesion and invasion of cold-stressed Salmonella in epithelial cells.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。