Mangiferin inhibits hypoxia/reoxygenation-induced alveolar epithelial cell injury via the SIRT1/AMPK signaling pathway

芒果苷通过SIRT1 / AMPK信号通路抑制缺氧/复氧诱导的肺泡上皮细胞损伤

阅读:4
作者:Xianfeng Chen, Juanjuan Huang

Abstract

Lung ischemia-reperfusion injury (LIRI) is one of the complications that can occur after lung transplantation and may lead to morbidity and mortality. Mangiferin (MAF) is a naturally occurring glucosyl xanthone that has been documented to possess anti-inflammatory, immunomodulatory and potent antioxidant effects. The purpose of the present study was to investigate the effect of MAF on LIRI using a hypoxia-reoxygenation (H/R) cell model. In the present study, the viability of lung alveolar epithelial cells (A549) and H/R-A549 were detected by MTT assay. ELISA was used to evaluate the expression levels of IL-6 and IL-1β. TUNEL assay and western blotting were used to evaluate the apoptosis. In addition, H/R-A549 cells were treated with sirtinol, which is known inhibitor of sirtuin 1 (SIRT1) activity, to determine the effects of MAF on proteins associated with the SIRT1/5'AMP-activate protein kinase (AMPK) signaling pathway using western blotting. The results showed that 20 µM MAF exerted a protective effect on A549 cells against H/R mediating no clear cytotoxic effects. In terms of inflammation, MAF reduced IL-6, IL-1β, cyclooxygenase-2 and inducible nitric oxide synthase expression, which was accompanied by activation of the SIRT1/AMPK signaling pathway. In addition, compared with those in the group treated with sirtinol, expression of SIRT1, Bcl-2 and AMPK activity were elevated in MAF-treated H/R-A549 cells, whereas the expression of Bax, cleaved caspase-3 and cleaved caspase-9 was suppressed. TUNEL analysis of H/R-A549 cells treated with MAF in combination with sirtinol revealed that treatment with sirtinol blocked the SIRT1/AMPK signaling pathway and increased the apoptosis rate compared with the MAF group. Taken together, results of the present study revealed that MAF could inhibit lung H/R cell injury through the SIRT1/AMPK signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。