Population serum proteomics uncovers a prognostic protein classifier for metabolic syndrome

群体血清蛋白质组学揭示代谢综合征的预后蛋白质分类器

阅读:5
作者:Xue Cai, Zhangzhi Xue, Fang-Fang Zeng, Jun Tang, Liang Yue, Bo Wang, Weigang Ge, Yuting Xie, Zelei Miao, Wanglong Gou, Yuanqing Fu, Sainan Li, Jinlong Gao, Menglei Shuai, Ke Zhang, Fengzhe Xu, Yunyi Tian, Nan Xiang, Yan Zhou, Peng-Fei Shan, Yi Zhu, Yu-Ming Chen, Ju-Sheng Zheng, Tiannan Guo0

Abstract

Metabolic syndrome (MetS) is a complex metabolic disorder with a global prevalence of 20%-25%. Early identification and intervention would help minimize the global burden on healthcare systems. Here, we measured over 400 proteins from ∼20,000 proteomes using data-independent acquisition mass spectrometry for 7,890 serum samples from a longitudinal cohort of 3,840 participants with two follow-up time points over 10 years. We then built a machine-learning model for predicting the risk of developing MetS within 10 years. Our model, composed of 11 proteins and the age of the individuals, achieved an area under the curve of 0.774 in the validation cohort (n = 242). Using linear mixed models, we found that apolipoproteins, immune-related proteins, and coagulation-related proteins best correlated with MetS development. This population-scale proteomics study broadens our understanding of MetS and may guide the development of prevention and targeted therapies for MetS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。