Force redistribution in clathrin-mediated endocytosis revealed by coiled-coil force sensors

螺旋力传感器揭示网格蛋白介导的内吞作用中的力重新分布

阅读:4
作者:Yuan Ren, Jie Yang, Barbara Fujita, Huaizhou Jin, Yongli Zhang, Julien Berro

Abstract

Forces are central to countless cellular processes, yet in vivo force measurement at the molecular scale remains difficult if not impossible. During clathrin-mediated endocytosis, forces produced by the actin cytoskeleton are transmitted to the plasma membrane by a multiprotein coat for membrane deformation. However, the magnitudes of these forces remain unknown. Here, we present new in vivo force sensors that induce protein condensation under force. We measured the forces on the fission yeast Huntingtin-Interacting Protein 1 Related (HIP1R) homolog End4p, a protein that links the membrane to the actin cytoskeleton. End4p is under ~19-piconewton force near the actin cytoskeleton, ~11 piconewtons near the clathrin lattice, and ~9 piconewtons near the plasma membrane. Our results demonstrate that forces are collected and redistributed across the endocytic machinery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。