The transcriptome variations of Panaxnotoginseng roots treated with different forms of nitrogen fertilizers

不同形态氮肥处理三七根系转录组变异

阅读:4
作者:Xiaohong Ou, Shipeng Li, Peiran Liao, Xiuming Cui, Binglian Zheng, Ye Yang, Dahui Liu, Yun Zheng

Background

The sensitivity of plants to ammonia is a worldwide problem that limits crop production. Excessive use of ammonium as the sole nitrogen source

Conclusion

These results suggest that the activated TCA cycle, as demonstrated by up-regulation of ACLA-3 and several key metabolites in this cycle, contributes to the increased Panax notoginseng root yield when applying both ammonium and nitrate fertilizer.

Results

In this study we found that the root growth of Panax notoginseng was inhibited when only adding ammonium nitrogen fertilizer, but the supplement of nitrate fertilizer recovered the integrity, activity and growth of root. Twelve RNA-seq profiles in four sample groups were produced and analyzed to identify deregulated genes in samples with different treatments. In comparisons to NH[Formula: see text] treated samples, ACLA-3 gene is up-regulated in samples treated with NO[Formula: see text] and with both NH[Formula: see text] and NO[Formula: see text], which is further validated by qRT-PCR in another set of samples. Subsequently, we show that the some key metabolites in the TCA cycle are also significantly enhanced when introducing NO[Formula: see text]. These potentially enhance the integrity and recover the growth of Panax notoginseng roots.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。