Effects of Mechanical Deformation on the Opto-Electronic Responses, Reactivity, and Performance of Conjugated Polymers: A DFT Study

机械变形对共轭聚合物光电响应、反应性和性能的影响:DFT 研究

阅读:9
作者:João P Cachaneski-Lopes, Augusto Batagin-Neto

Abstract

The development of polymers for optoelectronic applications is an important research area; however, a deeper understanding of the effects induced by mechanical deformations on their intrinsic properties is needed to expand their applicability and improve their durability. Despite the number of recent studies on the mechanochemistry of organic materials, the basic knowledge and applicability of such concepts in these materials are far from those for their inorganic counterparts. To bring light to this, here we employ molecular modeling techniques to evaluate the effects of mechanical deformations on the structural, optoelectronic, and reactivity properties of traditional semiconducting polymers, such as polyaniline (PANI), polythiophene (PT), poly (p-phenylene vinylene) (PPV), and polypyrrole (PPy). For this purpose, density functional theory (DFT)-based calculations were conducted for the distinct systems at varied stretching levels in order to identify the influence of structural deformations on the electronic structure of the systems. In general, it is noticed that the elongation process leads to an increase in electronic gaps, hypsochromic effects in the optical absorption spectrum, and small changes in local reactivities. Such changes can influence the performance of polymer-based devices, allowing us to establish significant structure deformation response relationships.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。