High cellular plasticity state of medulloblastoma local recurrence and distant dissemination

髓母细胞瘤局部复发和远处播散的高细胞可塑性状态

阅读:4
作者:Hailong Liu, Jing Zhang, Ziwei Wang, Wei Wang, Dongming Han, Xuan Chen, Yu Su, Jiao Zhang, Craig Daniels, Olivier Saulnier, Zeyuan John Wang, Chunyu Gu, Fei Liu, Kaiwen Deng, Dongyang Wang, Zhaoyang Feng, Yahui Zhao, Yifei Jiang, Yu Gao, Zijia Liu, Mingxu Ma, Yanong Li, Zitong Zhao, Hongyu Yuan, You

Abstract

Medulloblastoma (MB), a heterogeneous pediatric brain tumor, poses challenges in the treatment of tumor recurrence and dissemination. To characterize cellular diversity and genetic features, we comprehensively analyzed single-cell/nucleus RNA sequencing (sc/snRNA-seq), single-nucleus assay for transposase-accessible chromatin sequencing (snATAC-seq), and spatial transcriptomics profiles and identified distinct cellular populations in SHH (sonic hedgehog) and Group_3 subgroups, with varying proportions in local recurrence or dissemination. Local recurrence showed higher cycling tumor cell enrichment, whereas disseminated lesions had a relatively notable presence of differentiated subsets. Chromosomal alteration evaluation revealed distinct genetic subclones during MB progression, such as chr7q gain and chr11 loss in Group_3 disseminations. A subpopulation termed "high cellular plasticity (HCP)" emerged during MB progression and was associated with increased dividing potential and chromatin accessibility, contributing to recurrence. Inhibiting HCP-associated markers, like protein tyrosine phosphatase receptor type Z1 (PTPRZ1), efficiently suppressed MB progression in preclinical models. These findings address critical gaps in understanding the cellular diversity, chromosomal alterations, and biological dynamics of recurrent MB, offering potential therapeutic insights.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。