Indoleamine 2,3-Dioxygenase-Dependent Neurotoxic Kynurenine Metabolism Contributes to Poststroke Depression Induced in Mice by Ischemic Stroke along with Spatial Restraint Stress

吲哚胺 2,3-双加氧酶依赖的神经毒性犬尿氨酸代谢导致小鼠因缺血性中风以及空间束缚应激而引发的中风后抑郁症

阅读:6
作者:Young Soo Koo, Hyunha Kim, Jung Hwa Park, Min Jae Kim, Yong-Il Shin, Byung Tae Choi, Seo-Yeon Lee, Hwa Kyoung Shin

Aim

Poststroke depression (PSD), which occurs in approximately one-third of stroke survivors, is clinically important because of its association with slow functional recovery and increased mortality. In addition, the underlying pathophysiological mechanisms are still poorly understood.

Conclusions

Our results suggest that the IDO1-dependent neurotoxic kynurenine metabolism induced by microglia functions in PSD pathogenesis. The beneficial effect of aripiprazole on depressive-like behavior and cognitive impairment may be mediated by inhibition of IDO1, HAAO, QUIN, and ROS.

Methods

We used a mouse model of PSD to examine the neurobiological mechanisms of PSD and the beneficial effects of aripiprazole, an atypical antipsychotic drug. PSD was induced in mice by combining middle cerebral artery occlusion (MCAO) with spatial restraint stress. The body weight, sucrose preference, and forced swim tests were performed at 5, 7, and 9 weeks and the Morris water maze test at 10 weeks after completing MCAO and spatial restraint stress.

Results

Mice subjected to MCAO and spatial restraint stress showed significant depressive-like behavior in the sucrose preference test and forced swim test as well as cognitive impairment in the Morris water maze test. The PSD-like phenotype was accompanied by an indoleamine 2,3-dioxygenase 1 (IDO1) expression increase in the nucleus accumbens, hippocampus, and hypothalamus, but not in the striatum. Furthermore, the increased IDO1 levels were localized in Iba-1(+) cells but not in NeuN(+) or GFAP(+) cells, indicating that microglia-induced IDO1 expression was prominent in the PSD mouse brain. Moreover, 3-hydroxyanthranilate 3,4-dioxygenase (HAAO), quinolinic acid (QUIN), and reactive oxygen species (ROS) were significantly increased in the nucleus accumbens, hippocampus, and hypothalamus of PSD mice. Importantly, a 2-week aripiprazole (1 mg/kg, per os) regimen, which was initiated 1 day after MCAO, ameliorated depressive-like behavior and impairment of cognitive functions in PSD mice that was accompanied by downregulation of IDO1, HAAO, QUIN, and ROS. Conclusions: Our results suggest that the IDO1-dependent neurotoxic kynurenine metabolism induced by microglia functions in PSD pathogenesis. The beneficial effect of aripiprazole on depressive-like behavior and cognitive impairment may be mediated by inhibition of IDO1, HAAO, QUIN, and ROS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。