Systems biology of industrial oxytetracycline production in Streptomyces rimosus: the secrets of a mutagenized hyperproducer

裂链霉菌工业土霉素生产的系统生物学:诱变高产菌的秘密

阅读:5
作者:Selma Beganovic, Christian Rückert-Reed, Hilda Sucipto, Wei Shu, Lars Gläser, Thomas Patschkowski, Ben Struck, Jörn Kalinowski, Andriy Luzhetskyy, Christoph Wittmann

Background

Oxytetracycline which is derived from Streptomyces rimosus, inhibits a wide range of bacteria and is industrially important. The underlying biosynthetic processes are complex and hinder rational engineering, so industrial manufacturing currently relies on classical mutants for production. While the biochemistry underlying oxytetracycline synthesis is known to involve polyketide synthase, hyperproducing strains of S. rimosus have not been extensively studied, limiting our knowledge on fundamental mechanisms that drive production.

Conclusions

This study suggests that the precursor supply should be globally increased to further increase the expression of the oxytetracycline cluster while maintaining the natural cluster sequence. The mutagenized hyperproducer S. rimosus HP126 exhibited numerous mutations, including large genomic rearrangements, due to natural genetic instability, and single nucleotide changes. More complex mutations were found than those typically observed in mutagenized bacteria, impacting gene expression, and complicating rational engineering. Overall, the approach revealed key traits influencing oxytetracycline production in S. rimosus, suggesting that similar studies for other antibiotics could uncover general mechanisms to improve production.

Results

In this study, a multiomics analysis of S. rimosus is performed and wild-type and hyperproducing strains are compared. Insights into the metabolic and regulatory networks driving oxytetracycline formation were obtained. The overproducer exhibited increased acetyl-CoA and malonyl CoA supply, upregulated oxytetracycline biosynthesis, reduced competing byproduct formation, and streamlined morphology. These features were used to synthesize bhimamycin, an antibiotic, and a novel microbial chassis strain was created. A cluster deletion derivative showed enhanced bhimamycin production. Conclusions: This study suggests that the precursor supply should be globally increased to further increase the expression of the oxytetracycline cluster while maintaining the natural cluster sequence. The mutagenized hyperproducer S. rimosus HP126 exhibited numerous mutations, including large genomic rearrangements, due to natural genetic instability, and single nucleotide changes. More complex mutations were found than those typically observed in mutagenized bacteria, impacting gene expression, and complicating rational engineering. Overall, the approach revealed key traits influencing oxytetracycline production in S. rimosus, suggesting that similar studies for other antibiotics could uncover general mechanisms to improve production.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。