Integrative analysis of noncoding mutations identifies the druggable genome in preterm birth

非编码突变的综合分析确定了早产中可用药物治疗的基因组

阅读:4
作者:Cheng Wang, Yuejun Jessie Wang, Lihua Ying, Ronald J Wong, Cecele C Quaintance, Xiumei Hong, Norma Neff, Xiaobin Wang, Joseph R Biggio, Sam Mesiano, Stephen R Quake, Cristina M Alvira, David N Cornfield, David K Stevenson, Gary M Shaw, Jingjing Li

Abstract

Preterm birth affects ~10% of pregnancies in the US. Despite familial associations, identifying at-risk genetic loci has been challenging. We built deep learning and graphical models to score mutational effects at base resolution via integrating the pregnant myometrial epigenome and large-scale patient genomes with spontaneous preterm birth (sPTB) from European and African American cohorts. We uncovered previously unidentified sPTB genes that are involved in myometrial muscle relaxation and inflammatory responses and that are regulated by the progesterone receptor near labor onset. We studied genomic variants in these genes in our recruited pregnant women administered progestin prophylaxis. We observed that mutation burden in these genes was predictive of responses to progestin treatment for preterm birth. To advance therapeutic development, we screened ~4000 compounds, identified candidate molecules that affect our identified genes, and experimentally validated their therapeutic effects on regulating labor. Together, our integrative approach revealed the druggable genome in preterm birth and provided a generalizable framework for studying complex diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。