Pinching the cortex of live cells reveals thickness instabilities caused by myosin II motors

捏住活细胞皮层可发现肌球蛋白 II 马达引起的厚度不稳定性

阅读:4
作者:Valentin Laplaud, Nicolas Levernier, Judith Pineau, Mabel San Roman, Lucie Barbier, Pablo J Sáez, Ana-Maria Lennon-Duménil, Pablo Vargas, Karsten Kruse, Olivia du Roure, Matthieu Piel, Julien Heuvingh

Abstract

The cell cortex is a contractile actin meshwork, which determines cell shape and is essential for cell mechanics, migration, and division. Because its thickness is below optical resolution, there is a tendency to consider the cortex as a thin uniform two-dimensional layer. Using two mutually attracted magnetic beads, one inside the cell and the other in the extracellular medium, we pinch the cortex of dendritic cells and provide an accurate and time-resolved measure of its thickness. Our observations draw a new picture of the cell cortex as a highly dynamic layer, harboring large fluctuations in its third dimension because of actomyosin contractility. We propose that the cortex dynamics might be responsible for the fast shape-changing capacity of highly contractile cells that use amoeboid-like migration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。