Transcriptome analysis reveals major transcriptional changes during regrowth after mowing of red clover (Trifolium pratense)

转录组分析揭示红三叶草(Trifolium pratense)割草后再生过程中发生的主要转录变化

阅读:8
作者:Denise Brigitte Herbert #, Thomas Gross #, Oliver Rupp, Annette Becker

Background

Red clover (Trifolium pratense) is globally used as a fodder plant due its high nutritional value and soil improving qualities. In response to mowing, red clover exhibits specific morphological traits to compensate the loss of biomass. The morphological reaction is well described, but the underlying molecular mechanisms and its role for plants grown in the field are unclear.

Conclusions

Our findings show that massive biomass loss triggers less transcriptional changes in field grown plants than their struggle with biotic and abiotic stresses and that gibberellins also play a role in the developmental program related to regrowth after mowing in red clover. Our results provide first insights into the physiological and developmental processes of mowing on red clover and may serve as a base for red clover yield improvement.

Results

Here, we characterize the global transcriptional response to mowing of red clover by comparing plants grown under greenhouse conditions with plants growing on agriculturally used fields. Unexpectedly, we found that biotic and abiotic stress related changes of plants grown in the field overlay their regrowth related transcriptional changes and characterized transcription related protein families involved in these processes. Further, we can show that gibberellins, among other phytohormones, also contribute to the developmental processes related to regrowth after biomass-loss. Conclusions: Our findings show that massive biomass loss triggers less transcriptional changes in field grown plants than their struggle with biotic and abiotic stresses and that gibberellins also play a role in the developmental program related to regrowth after mowing in red clover. Our results provide first insights into the physiological and developmental processes of mowing on red clover and may serve as a base for red clover yield improvement.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。