Klf10 Regulates the Emergence of Glial Phenotypes During Hypothalamic Development

Klf10 调节下丘脑发育过程中神经胶质细胞表型的出现

阅读:12
作者:Norma Angelica Garduño-Tamayo, Jorge Luis Almazán, Rubí Romo-Rodríguez, David Valle-García, Karla F Meza-Sosa, Martha Pérez-Domínguez, Rosana Pelayo, Gustavo Pedraza-Alva, Leonor Pérez-Martínez

Abstract

Glial cells play a pivotal role in the Central Nervous System (CNS), constituting most brain cells. Gliogenesis, crucial in CNS development, occurs after neurogenesis. In the hypothalamus, glial progenitors first generate oligodendrocytes and later astrocytes. However, the precise molecular mechanisms governing the emergence of glial lineages in the developing hypothalamus remain incompletely understood. This study reveals the pivotal role of the transcription factor KLF10 in regulating the emergence of both astrocyte and oligodendrocyte lineages during embryonic hypothalamic development. Through transcriptomic and bioinformatic analyses, we identified novel KLF10 putative target genes, which play important roles in the differentiation of neurons, astrocytes, and oligodendrocytes. Notably, in the absence of KLF10, there is an increase in the oligodendrocyte population, while the astrocyte population decreases in the embryonic hypothalamus. Strikingly, this decline in the number of astrocytes persists into adulthood, indicating that the absence of KLF10 leads to an extended period of oligodendrocyte emergence while delaying the appearance of astrocytes. Our findings also unveil a novel signaling pathway for Klf10 gene expression regulation. We demonstrate that Klf10 is a target of CREB and that its expression is upregulated via the BDNF-p38-CREB pathway. Thus, we postulate that KLF10 is an integral part of the hypothalamic developmental program that ensures the correct timing for glial phenotypes' generation. Importantly, we propose that the Klf10-/- mouse model represents a valuable tool for investigating the impact of reduced astrocyte and microglia populations in the homeostasis of the adult hypothalamus.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。