Integration of a low-cost electronic nose and a voltammetric electronic tongue for red wines identification

低成本电子鼻与伏安电子舌的结合用于红酒鉴别

阅读:2
作者:Fangkai Han, Dongjing Zhang, Joshua H Aheto, Fan Feng, Tengfei Duan

Abstract

The purpose of this present study was to develop a rapid and effective approach for identification of red wines that differ in geographical origins, brands, and grape varieties, a multi-sensor fusion technology based on a novel cost-effective electronic nose (E-nose) and a voltammetric electronic tongue (E-tongue) was proposed. The E-nose sensors was created using porphyrins or metalloporphyrins, pH indicators and Nile red printed on a C2 reverse phase silica gel plate. The voltammetric E-Tongue with six metallic working electrodes, namely platinum, gold, palladium, tungsten, titanium, and silver was employed to sense the taste of red wines. Principal component analysis (PCA) was utilized for dimensionality reduction and decorrelation of the raw sensors datasets. The fusion models derived from extreme learning machine (ELM) were built with PCA scores of E-nose and tongue as the inputs. Results showed superior performance (100% recognition rate) using combination of odor and taste sensors than individual artificial systems. The results suggested that fusion of the novel cost-effective E-nose created and voltammetric E-tongue coupled with ELM has a powerful potential in rapid quality evaluation of red wine.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。