Flap endonuclease 1 repairs DNA-protein cross-links via ADP-ribosylation-dependent mechanisms

瓣状内切酶 1 通过 ADP 核糖基化依赖机制修复 DNA-蛋白质交联

阅读:12
作者:Yilun Sun, Lisa M Jenkins, Lara H El Touny, Linying Zhu, Xi Yang, Ukhyun Jo, Lauren Escobedo, Tapan K Maity, Liton Kumar Saha, Isabel Uribe, Sourav Saha, Shunichi Takeda, Anthony K L Leung, Ken Cheng, Yves Pommier

Abstract

DNA-protein cross-links (DPCs) are among the most detrimental genomic lesions. They are ubiquitously produced by formaldehyde (FA), and failure to repair FA-induced DPCs blocks chromatin-based processes, leading to neurodegeneration and cancer. The type, structure, and repair of FA-induced DPCs remain largely unknown. Here, we profiled the proteome of FA-induced DPCs and found that flap endonuclease 1 (FEN1) resolves FA-induced DPCs. We revealed that FA also damages DNA bases adjoining the DPCs, leading to DPC-conjugated 5' flap structures via the base excision repair (BER) pathway. We also found that FEN1 repairs enzymatic topoisomerase II (TOP2)-DPCs. Furthermore, we report that both FA-induced and TOP2-DPCs are adenosine diphosphate (ADP) ribosylated by poly(ADP-ribose) polymerase 1 (PARP1). PARylation of the DPCs in association with FEN1 PARylation at residue E285 is required for the recruitment of FEN1. Our work unveils the identity of proteins forming FA-induced DPCs and a previously unrecognized PARP1-FEN1 nuclease pathway repairing both FA- and TOP2-DPCs.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。