Rapid detection of Plasmodium falciparum with isothermal recombinase polymerase amplification and lateral flow analysis

利用恒温重组酶聚合酶扩增和横向流动分析快速检测恶性疟原虫

阅读:5
作者:Sebastian Kersting, Valentina Rausch, Frank Fabian Bier, Markus von Nickisch-Rosenegk

Background

Nucleic acid amplification is the most sensitive and specific method to detect Plasmodium falciparum. However the polymerase chain reaction remains laboratory-based and has to be conducted by trained personnel. Furthermore, the power dependency for the thermocycling process and the costly equipment necessary for the read-out are difficult to cover in resource-limited settings. This study aims to develop and evaluate a combination of isothermal nucleic acid amplification and simple lateral flow dipstick detection of the malaria parasite for point-of-care testing.

Conclusions

Combining the isothermal RPA and the lateral flow detection is an approach to improve molecular diagnostic for P. falciparum in resource-limited settings. The system requires none or only little instrumentation for the nucleic acid amplification reaction and the read-out is possible with the naked eye. Showing the same sensitivity and specificity as comparable diagnostic methods but simultaneously increasing reaction speed and dramatically reducing assay requirements, the method has potential to become a true point-of-care test for the malaria parasite.

Methods

A specific fragment of the 18S rRNA gene of P. falciparum was amplified in 10 min at a constant 38°C using the isothermal recombinase polymerase amplification (RPA) method. With a unique probe system added to the reaction solution, the amplification product can be visualized on a simple lateral flow strip without further labelling. The combination of these methods was tested for sensitivity and specificity with various Plasmodium and other protozoa/bacterial strains, as well as with human DNA. Additional investigations were conducted to analyse the temperature optimum, reaction speed and robustness of this assay.

Results

The lateral flow RPA (LF-RPA) assay exhibited a high sensitivity and specificity. Experiments confirmed a detection limit as low as 100 fg of genomic P. falciparum DNA, corresponding to a sensitivity of approximately four parasites per reaction. All investigated P. falciparum strains (n=77) were positively tested while all of the total 11 non-Plasmodium samples, showed a negative test result. The enzymatic reaction can be conducted under a broad range of conditions from 30-45°C with high inhibitory concentration of known PCR inhibitors. A time to result of 15 min from start of the reaction to read-out was determined. Conclusions: Combining the isothermal RPA and the lateral flow detection is an approach to improve molecular diagnostic for P. falciparum in resource-limited settings. The system requires none or only little instrumentation for the nucleic acid amplification reaction and the read-out is possible with the naked eye. Showing the same sensitivity and specificity as comparable diagnostic methods but simultaneously increasing reaction speed and dramatically reducing assay requirements, the method has potential to become a true point-of-care test for the malaria parasite.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。