Metabolomic Analysis Evidences That Uterine Epithelial Cells Enhance Blastocyst Development in a Microfluidic Device

代谢组学分析证明子宫上皮细胞可促进微流控装置中的囊胚发育

阅读:5
作者:Vanessa Mancini, Alexandra C Schrimpe-Rutledge, Simona G Codreanu, Stacy D Sherrod, John A McLean, Helen M Picton, Virginia Pensabene

Abstract

Here we report the use of a microfluidic system to assess the differential metabolomics of murine embryos cultured with endometrial cells-conditioned media (CM). Groups of 10, 1-cell murine B6C3F1 × B6D2F1 embryos were cultured in the microfluidic device. To produce CM, mouse uterine epithelial cells were cultured in potassium simplex optimized medium (KSOM) for 24 h. Media samples were collected from devices after 5 days of culture with KSOM (control) and CM, analyzed by reverse phase liquid chromatography and untargeted positive ion mode mass spectrometry analysis. Blastocyst rates were significantly higher (p < 0.05) in CM (71.8%) compared to control media (54.6%). We observed significant upregulation of 341 compounds and downregulation of 214 compounds in spent media from CM devices when compared to control. Out of these, 353 compounds were identified showing a significant increased abundance of metabolites involved in key metabolic pathways (e.g., arginine, proline and pyrimidine metabolism) in the CM group, suggesting a beneficial effect of CM on embryo development. The metabolomic study carried out in a microfluidic environment confirms our hypothesis on the potential of uterine epithelial cells to enhance blastocyst development. Further investigations are required to highlight specific pathways involved in embryo development and implantation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。