Upscaling Thermoelectrics: Micron-Thick, Half-a-Meter-Long Carbon Nanotube Films with Monolithic Integration of p- and n-Legs

升级热电材料:微米厚、半米长的碳纳米管薄膜,具有 p 型和 n 型腿的单片集成

阅读:6
作者:Osnat Zapata-Arteaga, Bernhard Dörling, Ivan Alvarez-Corzo, Kai Xu, Juan Sebastián Reparaz, Mariano Campoy-Quiles

Abstract

In order for organic thermoelectrics to successfully establish their own niche as energy-harvesting materials, they must reach several crucial milestones, including high performance, long-term stability, and scalability. Performance and stability are currently being actively studied, whereas demonstrations of large-scale compatibility are far more limited and for carbon nanotubes (CNTs) are still missing. The scalability challenge includes material-related economic considerations as well as the availability of fast deposition methods that produce large-scale films that simultaneously satisfy the thickness constraints required for thermoelectric modules. Here we report on true solutions of CNTs that form gels upon air exposure, which can then be dried into micron-thick films. The CNT ink can be extruded using a slot-shaped nozzle into a continuous film (more than half a meter in the present paper) and patterned into alternating n- and p-type components, which are then folded to obtain the finished thermoelectric module. Starting from a given n-type film, differentiation between the n and p components is achieved by a simple postprocessing step that involves a partial oxidation reaction and neutralization of the dopant. The presented method allows the thermoelectric legs to seamlessly interconnect along the continuous film, thus avoiding the need for metal electrodes, and, most importantly, it is compatible with large-scale printing processes. The resulting thermoelectric legs retain 80% of their power factor after 100 days in air and about 30% after 300 days. Using the proposed methodology, we fabricate two thermoelectric modules of 4 and 10 legs that can produce maximum power outputs of 1 and 2.4 μW, respectively, at a temperature difference ΔT of 46 K.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。