Identification of key candidate genes and pathways in oral squamous cell carcinoma by integrated Bioinformatics analysis

通过整合生物信息学分析鉴定口腔鳞状细胞癌的关键候选基因和通路

阅读:6
作者:Bo Zou, Jun Li, Kai Xu, Jian-Lin Liu, Dao-Ying Yuan, Zhen Meng, Bin Zhang

Abstract

Oral squamous cell carcinoma (OSCC) is one of the most common types of malignant head and neck tumor, which poses a serious threat to human health. In recent years, the incidence of OSCC has been increasing, while the prognosis has not significantly improved. Elucidation of the molecular mechanisms underlying the development of OSCC may provide novel therapeutic strategies. In the present study, the gene expression profiles from 4 datasets, including 244 OSCC and 95 normal oral mucosa samples, were subjected to statistical and Bioinformatics analysis. A total of 34 differentially expressed genes (DEGs) were identified, among which 14 were upregulated and 20 were downregulated in OSCC compared with normal oral mucosa tissues. Gene Ontology enrichment analysis indicated that the DEGs were mainly involved in regulation of the immune response, cell adhesion and cell proliferative processes. The Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the DEGs were mainly associated with the phosphoinositide-3 kinase Akt and Toll-like receptor signaling pathway. The key candidate DEGs were identified from the complex protein-protein interaction network, and secreted phosphoprotein 1 (SPP1), integrin subunit α 3 and plasminogen activator, urokinase (PLAU) were confirmed to be significantly associated with the survival rate. Cell Counting Kit-8 and Transwell assays demonstrated that SPP1 and PLAU regulate cell proliferation, migration and invasion. The candidate genes/pathways identified in the present study may include promising diagnostic biomarkers or therapeutic targets for OSCC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。