New supramolecules of bis(acylhydrazones)-linked bisphenol sulfide for Alzheimer's: targeting cholinesterases by in vitro and in silico approaches

用于治疗阿尔茨海默氏症的双(酰腙)连接双酚硫化物的新型超分子:通过体外和计算机模拟方法靶向胆碱酯酶

阅读:4
作者:Muhammad Ibrahim, Mumtaz Ali, Sobia Ahsan Halim, Abdul Latif, Manzoor Ahmad, Sajid Ali, SameeUllah, Ajmal Khan, Alany Ingrido Rebierio, Jalal Uddin, Ahmed Al-Harrasi

Abstract

In current research, two functional components, i.e., hydrazone and bisphenol sulfide were combined to get useful supramolecules in medicinal chemistry. Herein 25 new 4,4'-thiodiphenol bis-acylhydrazones were synthesized in good to excellent yields. Initially ethyl-2-chloroacetate was reacted with 4,4'-thiodiphenol, which was further reacted with excess hydrazine hydrate to produce 2,2'-((thiobis(4,1-phenylene))bis(oxy))di(acetohydrazide), which was then combined with various aromatic and aliphatic aldehydes to get the desired products (hydrazones, 4a-4y). The synthesized supramolecules were characterized by contemporary spectroscopic techniques such as 1H NMR, 13C NMR, and mass spectroscopy. The synthetic compound's cholinesterase blocking activity was tested against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes where compounds 4n, and 4h showed excellent inhibitory potential for AChE, while 4b, and 4h, demonstrated most potent inhibition of BChE. The starting compound (SM3) and compounds 4h and SM3 depicted excellent dual inhibitory capabilities for both enzymes. The chemical basis of anticholinesterase activity was investigated using a structure-based molecular docking approach. The biological significance and the ease of synthesis of this class of compounds should be considered in therapeutic development for Alzheimer's disease treatments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。