Rotenone-induced energy stress decompensated in ventral mesocerebrum is associated with Parkinsonism progression in rats

鱼藤酮诱导的中脑腹侧能量应激失代偿与大鼠帕金森病进展有关

阅读:5
作者:Qunhua Bai, Junlin He, Yong Tang, Shibo Wang, Jingfu Qiu, Yang Wang, Chao Yu

Abstract

Parkinson's disease (PD) is the second most common neurodegenerative disorder, which is characterized by the hallmark feature of loss of dopaminergic neurons in the substantia nigra. Energy metabolic disorder is associated with the pathogenesis of PD; however, the development of this disorder is yet to be elucidated. PD-like characteristics have been demonstrated in a rotenone rat model. In the present study, energy metabolism status was investigated in a rat model following intraperitoneal treatment with 1.0 mg/kg rotenone every 48 h. The behavior and tyrosine hydroxylase-positive levels in the substantia nigra of rats that were treated with rotenone for 24 weeks demonstrated that these rats developed more severe parkinsonism, as compared with that were treated for 16 weeks. Detection of ATP, lactic acid, NADH dehydrogenase 1 mRNA and lactate dehydrogenase B mRNA levels in the ventral mesocerebrum (VM) and skeletal muscle (SM) of the rats that had been treated with rotenone for 16 and 24 weeks demonstrated that the energy stress induced by rotenone progressed in both VM and SM. Notably, the energy stress detected in VM was more severe, and this energy stress was decompensated in the VM of rats that had been treated with rotenone for 24 weeks. The progression of energy stress and the incidence of energy decompensation in VM may be important for the improvement of PD pathology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。