Conclusion
Using a random forest algorithm, we identified a signature of 275 miRNAs that allows the detection of invasive breast cancer in urine. Furthermore, we identified distinct miRNA expression patterns for the major intrinsic subtypes of breast cancer, specifically luminal A, luminal B, HER2-enriched, and triple-negative breast cancer. This experimental approach specifically validates miRNA sequencing as a technique for breast cancer detection in urine samples and opens the door to a new, easy, and painless procedure for different breast cancer-related medical procedures such as screening but also treatment monitoring.
Methods
Here, we present the first proof-of-concept approach for sequencing miRNAs in female urine to detect breast cancer and, subsequently, intrinsic subtype-specific miRNA patterns and implement in this regard a novel random forest algorithm. To this end, we performed miRNA sequencing on 82 urine samples, 32 samples from breast cancer patients (9× luminal A, 8× luminal B, 9× triple-negative, and 6× HER2) and 50 healthy control samples.
