High-stretchability and low-hysteresis strain sensors using origami-inspired 3D mesostructures

采用受折纸启发的 3D 介观结构的高拉伸性和低滞后应变传感器

阅读:6
作者:Xinghao Huang, Liangshu Liu, Yung Hsin Lin, Rui Feng, Yiyang Shen, Yuanning Chang, Hangbo Zhao

Abstract

Stretchable strain sensors are essential for various applications such as wearable electronics, prosthetics, and soft robotics. Strain sensors with high strain range, minimal hysteresis, and fast response speed are highly desirable for accurate measurements of large and dynamic deformations of soft bodies. Current stretchable strain sensors mostly rely on deformable conducting materials, which often have difficulties in achieving these properties simultaneously. In this study, we introduce capacitive strain sensor concepts based on origami-inspired three-dimensional mesoscale electrodes formed by a mechanically guided assembly process. These sensors exhibit up to 200% stretchability with 1.2% degree of hysteresis, <22 ms response time, small sensing area (~5 mm2), and directional strain responses. To showcase potential applications, we demonstrate the use of distributed strain sensors for measuring multimodal deformations of a soft continuum arm.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。