Replication stress induced by the ribonucleotide reductase inhibitor guanazole, triapine and gemcitabine in fission yeast

核苷酸还原酶抑制剂胍唑、三氮平和吉西他滨在裂殖酵母中诱导的复制应激

阅读:11
作者:Mashael Y Alyahya, Saman Khan, Sankhadip Bhadra, Rittu E Samuel, Yong-Jie Xu

Abstract

Schizosaccharomyces pombe is an established yeast model for studying the cellular mechanisms conserved in humans, such as the DNA replication checkpoint. The replication checkpoint deals with replication stress caused by numerous endogenous and exogenous factors that perturb fork movement. If undealt with, perturbed forks collapse, causing chromosomal DNA damage or cell death. Hydroxyurea (HU) is an inhibitor of ribonucleotide reductase (RNR) commonly used in checkpoint studies. It produces replication stress by depleting dNTPs, which slows the movement of ongoing forks and thus activates the replication checkpoint. However, HU also causes side effects such as oxidative stress, particularly under chronic exposure conditions, which complicates the studies. To find a drug that generates replication stress more specifically, we tested three other RNR inhibitors gemcitabine, guanazole and triapine in S. pombe under various experimental conditions. Our results show that guanazole and triapine can produce replication stress more specifically than HU under chronic, not acute drug treatment conditions. Therefore, using the two drugs in spot assay, the method commonly used for testing drug sensitivity in yeasts, should benefit the checkpoint studies in S. pombe and likely the research in other model systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。