MiR-19b-3p accelerates bone loss after spinal cord injury by suppressing osteogenesis via regulating PTEN/Akt/mTOR signalling

MiR-19b-3p 通过调节 PTEN/Akt/mTOR 信号传导抑制成骨作用,加速脊髓损伤后的骨质流失

阅读:7
作者:Da Liu, Bo Wang, Min Qiu, Ying Huang

Abstract

Rapid and extensive bone loss, one of the skeletal complications after spinal cord injury (SCI) occurrence, drastically sacrifices the life quality of SCI patients. It has been demonstrated that microRNA (miRNA) dysfunction plays an important role in the initiation and development of bone loss post-SCI. Nevertheless, the effect of miR-19b-3p on bone loss after SCI is unknown and the accurate mechanism is left to be elucidated. The present work was conducted to explore the role of miR-19b-3p/phosphatase and tensin homolog deleted on chromosome ten (PTEN) axis on osteogenesis after SCI and further investigates the underlying mechanisms. We found that miR-19b-3p level was increased in the femurs of SCI rats with decreased autophagy. The overexpression of miR-19b-3p in bone marrow mesenchymal stem cells (BMSCs) targeted down-regulation of PTEN expression, facilitated protein kinase B (Akt) and mammalian target of rapamycin (mTOR) phosphorylation, and thereby suppressing BMSCs osteogenic differentiation via autophagy. Besides, the inhibiting effects of miR-19b-3p on osteogenic differentiation of BMSCs could be diminished by autophagy inducer rapamycin. Meanwhile, bone loss after SCI in rats was also reversed by antagomir-19b-3p treatment, suggesting miR-19b-3p was an essential target for osteogenic differentiation via regulating autophagy. These results indicated that miR-19b-3p was involved in bone loss after SCI by inhibiting osteogenesis via PTEN/Akt/mTOR signalling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。