Conclusions
Nuclear atypia and enlarged cells are histopathological hallmarks for glioblastoma multiforme, the highest grade glioma, suggesting that a defect in TRPC channel function may contribute to cellular abnormalities in these tumours.
Methods
Employing a combination of molecular, biochemical and biophysical techniques, we characterized TRPC channels in glioma cells.
Results
We showed consistent expression of four channel family members (TRPC-1, -3, -5, -6) in glioma cell lines and acute patient-derived tissues. These channels gave rise to small, non-voltage-dependent cation currents that were blocked by the TRPC inhibitors GdCl(3), 2-APB, or SKF96365. Importantly, TRPC channels contributed to the resting conductance of glioma cells and their acute pharmacological inhibition caused an approximately 10 mV hyperpolarization of the cells' resting potential. Additionally, chronic application of the TRPC inhibitor SKF96365 caused near complete growth arrest. A detailed analysis, by fluorescence-activated cell sorting and time-lapse microscopy, showed that growth inhibition occurred at the G(2)+ M phase of the cell cycle with cytokinesis defects. Cells underwent incomplete cell divisions and became multinucleate, enlarged cells. Conclusions: Nuclear atypia and enlarged cells are histopathological hallmarks for glioblastoma multiforme, the highest grade glioma, suggesting that a defect in TRPC channel function may contribute to cellular abnormalities in these tumours.
