Comprehensive Analysis of Metabolic Changes in Male Mice Exposed to Sodium Valproate Based on GC-MS Analysis

基于GC-MS分析的丙戊酸钠暴露雄性小鼠代谢变化综合分析

阅读:9
作者:Yahao Gao #, Di Jiang #, Changshui Wang, Gang An, Li Zhu, Changmeng Cui

Conclusion

These metabolites were closely related and were found to participate in 12 key pathways related to amino acid, fatty acid, and energy metabolism, revealing that the toxic mechanism of VPA may involve oxidative stress, inflammation, amino acid metabolism, lipid metabolism, and energy disorder.

Methods

Central target tissues (intestine, lung, liver, hippocampus, cerebral cortex, inner ear, spleen, kidney, heart, and serum) were analyzed using gas chromatography mass spectrometry to comprehensively evaluate VPA toxicity in mouse models.

Purpose

Sodium valproate (VPA) is the most widely used broad-spectrum antiepileptic first-line drug in clinical practice and is effective against various types of epilepsy. However, VPA can induce severe cardiotoxicity, nephrotoxicity, hepatotoxicity, and neurotoxicity, which limits its use. Metabolomic studies of VPA-induced toxicity have focused primarily on changes in serum and urine metabolites but have not evaluated changes in major organs or tissues.

Results

Multivariate analyses, including orthogonal projections of the latent structure and Student's t test, indicated that depending on the matrix used in the study (the intestine, lung, liver, hippocampus, cerebral cortex, inner ear, spleen, kidney, heart or serum) the number of metabolites differed, the lung being the poorest and the kidney the richest in number.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。