Disrupting stroke-induced GAT-1-syntaxin1A interaction promotes functional recovery after stroke

破坏中风引起的 GAT-1-syntaxin1A 相互作用可促进中风后的功能恢复

阅读:3
作者:Yu-Hui Lin, Feng Wu, Ting-You Li, Long Lin, Fan Gao, Li-Juan Zhu, Xiu-Mei Xu, Ming-Yu Chen, Ya-Lan Hou, Chang-Jing Zhang, Hai-Yin Wu, Lei Chang, Chun-Xia Luo, Ya-Juan Qin, Dong-Ya Zhu

Abstract

Although stroke is a frequent cause of permanent disability, our ability to promote stroke recovery is limited. Here, we design a small-molecule stroke recovery promoting agent that works by dissociating γ-aminobutyric acid (GABA) transporter 1 (GAT-1) from syntaxin1A (Synt1A), a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein. Stroke induces an increase in GAT-1-Synt1A interaction in the subacute phase, a critical period for functional recovery. Uncoupling GAT-1-Synt1A reverses stroke-induced GAT-1 dysfunction and cortical excitability decline and enhances synaptic GABAergic inhibition and consequently cortical oscillations and network plasticity by facilitating the assembly of the SNARE complex at the synapse. Based on the molecular mechanism of GAT-1 binding to Synt1A, we design GAT-1-Synt1A blockers. Among them, ZLQ-3 exhibits the greatest potency. Intranasal use of ZLQ-3-1, a glycosylation product of ZLQ-3, substantially lessens impairments of sensorimotor and cognitive functions in rodent models. This compound, or its analogs, may serve as a promoting agent for stroke recovery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。