EGFRvIII stimulates glioma growth and invasion through PKA-dependent serine phosphorylation of Dock180

EGFRvIII 通过 PKA 依赖的 Dock180 丝氨酸磷酸化刺激神经胶质瘤生长和侵袭

阅读:12
作者:H Feng, B Hu, K Vuori, J N Sarkaria, F B Furnari, W K Cavenee, S-Y Cheng

Abstract

Glioblastomas (GBMs), the most common and malignant brain tumors, are highly resistant to current therapies. The failure of targeted therapies against aberrantly activated oncogenic signaling, such as that of the EGFR-PI3K/Akt pathway, underscores the urgent need to understand alternative downstream pathways and to identify new molecular targets for the development of more effective treatments for gliomas. Here, we report that EGFRvIII (ΔEGFR/de2-7EGFR), a constitutively active EGFR mutant that is frequently co-overexpressed with EGFR in clinical GBM tumors, promotes glioma growth and invasion through protein kinase A (PKA)-dependent phosphorylation of Dock180, a bipartite guanine nucleotide exchange factor (GEF) for Rac1. We demonstrate that EGFRvIII induces serine phosphorylation of Dock180, stimulates Rac1 activation and glioma cell migration. Treatments of glioma cells using the PKA inhibitors H-89 and KT5720, overexpression of a PKA inhibitor (PKI), and in vitro PKA kinase assays show that EGFRvIII induction of serine phosphorylation of Dock180 is PKA-dependent. Significantly, PKA induces phosphorylation of Dock180 at amino acid residue S1250 that resides within its Rac1-activating DHR-2 domain. Expression of the Dock180(S1250L) mutant, but not wild type Dock180(WT), protein in EGFRvIII-expressing glioma cells inhibited receptor-stimulated cell proliferation, survival, migration in vitro and glioma tumor growth and invasion in vivo. Together, our findings describe a novel mechanism by which EGFRvIII drives glioma tumorigenesis and invasion through PKA-dependent phosphorylation of Dock180, thereby suggesting that targeting EGFRvIII-PKA-Dock180-Rac1 signaling axis could provide a novel pathway to develop potential therapeutic strategies for malignant gliomas.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。