Within-host selection of drug resistance in a mouse model of repeated interrupted treatment of Plasmodium yoelii infection

约氏疟原虫感染反复中断治疗的小鼠模型中宿主内药物耐药性的选择

阅读:5
作者:Suci Nuralitha, Josephine E Siregar, Din Syafruddin, Andy I M Hoepelman, Sangkot Marzuki

Background

To study within-host selection of resistant parasites, an important factor in the development of resistance to anti-malarial drugs, a mouse model of repeated interrupted malaria treatment (RIT) has been developed. The characteristics of within host selection of resistance to atovaquone and pyrimethamine in Plasmodium yoelii was examined in such a model.

Conclusions

RIT of P. yoelii infected mice led to rapid development of resistance to atovaquone and pyrimethamine. The dose dependent selection of resistance mutants to atovaquone observed during RIT might reflect the outcome of two different causes of malaria treatment failure in human, repeated incomplete treatment with therapeutic dose and repeated inadequate treatment associated with sub-therapeutic dose, and need to be systematically investigated.

Methods

Treatment of P. yoelii infected mice, with atovaquone or pyrimethamine, was started at parasitaemia level of 3-5%, interrupted when reduced to less than 0.4%, and restarted following parasitaemia recovery to the initial level. Treatment cycles were repeated until stable phenotype resistance was observed.

Results

Plasmodium yoelii rapidly developed resistance to atovaquone (2.75 ± 1.06 cycles) and to pyrimethamine (5.4 ± 0.89 cycles) under RIT. A dose dependent phenomenon in the selection of atovaquone resistance mutations was observed. All mutations that underlie resistance to therapeutic doses of 0.3-1.44 mg kg-1 BW were found to be in the Qo2 domain of the cytochrome b gene (I258M, F267I/L/S, L271V, K272R, L271V and K272R). Those associated with lower doses of 0.01-0.03 mg kg-1 BW were in the Qo1 domain (M133I and T139S). The resistance mutations occurred at four of the 16 atovaquone putative drug binding sites suggested in P. falciparum. Conclusions: RIT of P. yoelii infected mice led to rapid development of resistance to atovaquone and pyrimethamine. The dose dependent selection of resistance mutants to atovaquone observed during RIT might reflect the outcome of two different causes of malaria treatment failure in human, repeated incomplete treatment with therapeutic dose and repeated inadequate treatment associated with sub-therapeutic dose, and need to be systematically investigated.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。