Mapping the proteogenomic landscape enables prediction of drug response in acute myeloid leukemia

绘制蛋白质组学图谱可预测急性髓系白血病的药物反应

阅读:5
作者:James C Pino, Camilo Posso, Sunil K Joshi, Michael Nestor, Jamie Moon, Joshua R Hansen, Chelsea Hutchinson-Bunch, Marina A Gritsenko, Karl K Weitz, Kevin Watanabe-Smith, Nicola Long, Jason E McDermott, Brian J Druker, Tao Liu, Jeffrey W Tyner, Anupriya Agarwal, Elie Traer, Paul D Piehowski, Cristina

Abstract

Acute myeloid leukemia is a poor-prognosis cancer commonly stratified by genetic aberrations, but these mutations are often heterogeneous and fail to consistently predict therapeutic response. Here, we combine transcriptomic, proteomic, and phosphoproteomic datasets with ex vivo drug sensitivity data to help understand the underlying pathophysiology of AML beyond mutations. We measure the proteome and phosphoproteome of 210 patients and combine them with genomic and transcriptomic measurements to identify four proteogenomic subtypes that complement existing genetic subtypes. We build a predictor to classify samples into subtypes and map them to a "landscape" that identifies specific drug response patterns. We then build a drug response prediction model to identify drugs that target distinct subtypes and validate our findings on cell lines representing various stages of quizartinib resistance. Our results show how multiomics data together with drug sensitivity data can inform therapy stratification and drug combinations in AML.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。