A nomogram combining long non-coding RNA expression profiles and clinical factors predicts survival in patients with bladder cancer

结合长链非编码 RNA 表达谱和临床因素的列线图可预测膀胱癌患者的生存率

阅读:4
作者:Yifan Wang, Lutao Du, Xuemei Yang, Juan Li, Peilong Li, Yinghui Zhao, Weili Duan, Yingjie Chen, Yunshan Wang, Haiting Mao, Chuanxin Wang

Abstract

Bladder cancer (BCa) is a heterogeneous disease with various tumorigenic mechanisms and clinical behaviors. The current tumor-node-metastasis (TNM) staging system is inadequate to predict overall survival (OS) in BCa patients. We developed a BCa-specific, long-non-coding-RNA (lncRNA)-based nomogram to improve survival prediction in BCa. We obtained the large-scale gene expression profiles of samples from 414 BCa patients in The Cancer Genome Atlas database. Using an lncRNA-mining computational framework, we identified three OS-related lncRNAs among 826 lncRNAs that were differentially expressed between BCa and normal samples. We then constructed a three-lncRNA signature, which efficiently distinguished high-risk from low-risk patients and was even viable in the TNM stage-II, TNM stage-III and ≥65-year-old subgroups (all P<0.05). Using clinical risk factors, we developed a signature-based nomogram, which performed better than the molecular signature or clinical factors alone for prognostic prediction. A bioinformatical analysis revealed that the three OS-related lncRNAs were co-expressed with genes involved in extracellular matrix organization. Functional assays demonstrated that RNF144A-AS1, one of the three OS-related lncRNAs, promoted BCa cell migration and invasion in vitro. Our three-lncRNA signature-based nomogram effectively predicts the prognosis of BCa patients, and could potentially be used for individualized management of such patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。