Endothelin-1 increases glomerular permeability and inflammation independent of blood pressure in the rat

内皮素-1 增加大鼠肾小球通透性和炎症,且与血压无关

阅读:4
作者:Mohamed A Saleh, Erika I Boesen, Jennifer S Pollock, Virginia J Savin, David M Pollock

Abstract

Endothelin (ET) 1 is a potent vasoactive peptide implicated in the pathogenesis of hypertension and renal disease. The aim of the current study was to test the hypotheses that ET-1 increases albumin permeability of glomeruli isolated from normal rats and that chronic ET-1 infusion will increase glomerular permeability and inflammation independent of blood pressure. Glomerular permeability to albumin was determined from the change in glomerular volume induced by exposing isolated glomeruli to oncotic gradients. Incubation of glomeruli taken from normal rats with ET-1 at a concentration that did not produce direct glomerular contraction (1 nmol/L) significantly increased glomerular permeability to albumin, reaching a maximum after 4 hours. Chronic ET-1 infusion for 2 weeks in Sprague-Dawley rats significantly increased glomerular permeability to albumin and nephrin excretion rate, effects that were attenuated in rats given an ET(A) receptor antagonist (ABT-627, 5 mg/kg per day). Urinary protein and albumin excretion and mean arterial pressure (telemetry) were not changed by ET-1 infusion. Acute incubation of glomeruli isolated from ET-1-infused rats with the selective ET(A) antagonist significantly reduced glomerular permeability to albumin, an effect not observed with acute treatment with a selective ET(B) antagonist. Chronic ET-1 infusion increased glomerular and plasma soluble intercellular adhesion molecule 1 and monocyte chemoattractant protein 1 and elevated the number of macrophages and lymphocytes in renal cortices (ED-1 and CD3-positive staining, respectively). These effects were all attenuated in rats given an ET(A) selective antagonist. These data support the hypothesis that ET-1 directly increases glomerular permeability to albumin and renal inflammation via ET(A) receptor activation independent of changes in arterial pressure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。