Background
Crohn's disease (CD) is an inflammatory bowel disease marked by an abnormal immune response and excessive pro-inflammatory cytokines, leading to impaired protein processing and endoplasmic reticulum (ER) stress. This stress, caused by the accumulation of misfolded proteins, triggers the unfolded protein response (UPR) through IRE1/Xbp-1, PERK/eIF2α, and ATF6 pathways, which are linked to intestinal inflammation. This study aimed to investigate ER stress in CD patients' intestinal mucosa and evaluate phenylbutyrate (PBA) as an ER stress inhibitor.
Conclusion
ER stress and UPR pathways are activated in CD colonic mucosa, and PBA reduces these markers, suggesting potential therapeutic benefits for CD-related inflammation.
Methods
Colon biopsies from CD patients and controls were cultured under five conditions, including 4-PBA treatments. Real-time PCR, cytokine level, and immunohistochemistry were performed.
Results
Immunohistochemistry revealed that ER stress was activated in CD patients' intestinal epithelial cells and lamina propria cells. PERK/eIF2α, but not IRE1/Xbp-1 or ATF6, was upregulated in CD patients compared to controls. UPR-related genes (STC2, CALR, HSPA5, HSP90B1) were also elevated in CD patients. PBA treatment significantly reduced ER stress and UPR markers while decreasing apoptotic markers like DDIT3. Pro-inflammatory cytokines, such as IL-1β, IL-6, IL-17, TNF- α, and sCD40L, were significantly reduced after PBA treatment.
