Alternative translation initiation generates cytoplasmic sheep prion protein

替代翻译起始产生细胞质绵羊朊病毒蛋白

阅读:5
作者:Christoffer Lund, Christel M Olsen, Susan Skogtvedt, Heidi Tveit, Kristian Prydz, Michael A Tranulis

Abstract

Cytoplasmic localization of the prion protein (PrP) has been observed in different species and cell types. We have investigated this poorly understood phenomenon by expressing fusion proteins of sheep prion protein and green fluorescent protein ((GFP)PrP) in N2a cells, with variable sequence context surrounding the start codon Met(1). (GFP)PrP expressed with the wild-type sequence was transported normally through the secretory pathway to the cell surface with acquisition of N-glycan groups, but two N-terminal fragments of (GFP)PrP were detected intracellularly, starting in frame from Met(17). When (GFP)PrP was expressed with a compromised Kozak sequence ((GFP)PrP*), dispersed intracellular fluorescence was observed. A similar switch from pericellular to intracellular PrP localization was seen when analogous constructs of sheep PrP, without inserted GFP, were expressed, showing that this phenomenon is not caused by the GFP tag. Western blotting revealed a reduction in glycosylated forms of (GFP)PrP*, whereas the N-terminal fragments starting from Met(17) were still present. Formation of these N-terminal fragments was completely abolished when Met(17) was replaced by Thr, indicating that leaky ribosomal scanning occurs for normal sheep PrP and that translation from Met(17) is the cause of the aberrant cytoplasmic localization observed for a fraction of the protein. In contrast, the same phenomenon was not detected upon expression of similar constructs for mouse PrP. Analysis of samples from sheep brain allowed immunological detection of N-terminal PrP fragments, indicating that sheep PrP is subject to similar processing mechanisms in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。