Dual targeting of MAPK and PI3K pathways unlocks redifferentiation of Braf-mutated thyroid cancer organoids

MAPK 和 PI3K 通路的双重靶向解锁 Braf 突变甲状腺癌类器官的再分化

阅读:7
作者:Hélène Lasolle, Andrea Schiavo, Adrien Tourneur, Pierre Gillotay, Bárbara de Faria da Fonseca, Lucieli Ceolin, Olivier Monestier, Benilda Aganahi, Laura Chomette, Marina Malta Letro Kizys, Lieven Haenebalcke, Tim Pieters, Steven Goossens, Jody Haigh, Vincent Detours, Ana Luiza Silva Maia, Sabine Cos

Abstract

Thyroid cancer is the most common endocrine malignancy and several genetic events have been described to promote the development of thyroid carcinogenesis. Besides the effects of specific mutations on thyroid cancer development, the molecular mechanisms controlling tumorigenesis, tumor behavior, and drug resistance are still largely unknown. Cancer organoids have been proposed as a powerful tool to study aspects related to tumor development and progression and appear promising to test individual responses to therapies. Here, using mESC-derived thyroid organoids, we developed a BrafV637E-inducible model able to recapitulate the features of papillary thyroid cancer in vitro. Overexpression of the murine BrafV637E mutation, equivalent to BrafV600E in humans, rapidly triggers to MAPK activation, cell dedifferentiation, and disruption of follicular organization. BrafV637E-expressing organoids show a transcriptomic signature for p53, focal adhesion, ECM-receptor interactions, EMT, and inflammatory signaling pathways. Finally, PTC-like thyroid organoids were used for drug screening assays. The combination of MAPK and PI3K inhibitors reversed BrafV637E oncogene-promoted cell dedifferentiation while restoring thyroid follicle organization and function in vitro. Our results demonstrate that pluripotent stem cells-derived thyroid cancer organoids can mimic tumor development and features while providing an efficient tool for testing novel targeted therapies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。