Conclusion
A monoclonal antibody blocking BAFF and depleting B cells had therapeutic effectiveness in the NOD mouse model of SjD. The increase in regulatory T-lymphocyte populations might underlie the efficacy of this treatment.
Material and methods
Female NOD mice between ages 10 and 18 weeks were treated with a BAFF-blocking monoclonal antibody, Sandy-2 or an isotype control. Dryness was measured by the stimulated salivary flow. Salivary lymphocytic infiltrates were assessed by immunohistochemistry. Blood, SGs, spleen and lymph-node lymphocyte subpopulations were analysed by flow cytometry. SG mRNA expression was analysed by transcriptomic analysis.
Methods
Female NOD mice between ages 10 and 18 weeks were treated with a BAFF-blocking monoclonal antibody, Sandy-2 or an isotype control. Dryness was measured by the stimulated salivary flow. Salivary lymphocytic infiltrates were assessed by immunohistochemistry. Blood, SGs, spleen and lymph-node lymphocyte subpopulations were analysed by flow cytometry. SG mRNA expression was analysed by transcriptomic analysis.
Results
BAFF inhibition significantly decreased SG lymphocytic infiltrates, which was inversely correlated with salivary flow. The treatment markedly decreased B-cell number in SGs, blood, lymph nodes and spleen and increased Foxp3+ regulatory and CD3+CD4-CD8- double negative T-cell numbers in SGs.
