Morphological and genetic characterization of jackfruit (Artocarpus heterophyllus) in the Kayunga and Luwero districts of Uganda

乌干达卡永加和卢韦罗地区菠萝蜜(Artocarpusheterophyllus)的形态和遗传特征

阅读:5
作者:Racheal Gwokyalya, Ann Nanteza, Henry Wagaba, Siraj Ismail Kayondo, Dan Kazigaba, Grace Nakabonge

Background

Jackfruit (Artocarpus heterophyllus) is an economically valuable fruit tree in Uganda. However, the production of jackfruit in Uganda is low. Additionally, because of deforestation, genetic erosion of the resource is predicted before its exploitation for crop improvement and conservation. As a prerequisite for crop improvement and conservation, 100 A. heterophyllus tree isolates from the Kayunga and Luwero districts in Uganda were characterized using 16 morphological and 10 microsatellite markers.

Conclusions

Both morphological and genetic analyses revealed variation in jackfruit within a single interbreeding population. This diversity can be exploited to establish breeding and conservation strategies to increase the production of jackfruit and hence boost farmers' incomes. However, selecting germplasm based on morphology alone may be misleading.

Results

The results from the morphological analysis revealed variations in tree height, diameter at breast height (DBH), and crown diameter, with coefficient of variation (CV) values of 20%, 41%, and 33%, respectively. Apart from the pulp taste, variation was also observed in qualitative traits, including tree vigor, trunk surface, branching density, tree growth habit, crown shape, leaf blade shape, fruit shape, fruit surface, flake shape, flake color, flake flavor and pulp consistency/texture. Genotyping revealed that the number of alleles amplified per microsatellite locus ranged from 2 to 5, with an average of 2.90 and a total of 29. The mean observed (Ho) and expected (He) heterozygosity were 0.71 and 0.57, respectively. Analysis of molecular variance (AMOVA) indicated that 81% of the variation occurred within individual trees, 19% among trees within populations and 0% between the two populations. The gene flow (Nm) in the two populations was 88.72. The results from the 'partitioning around medoids' (PAM), principal coordinate analysis (PCoA) and genetic cluster analysis further revealed no differentiation of the jackfruit populations. The Mantel test revealed a negligible correlation between the morphological and genetic distances. Conclusions: Both morphological and genetic analyses revealed variation in jackfruit within a single interbreeding population. This diversity can be exploited to establish breeding and conservation strategies to increase the production of jackfruit and hence boost farmers' incomes. However, selecting germplasm based on morphology alone may be misleading.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。