The Molecular Mechanism Investigation of HBP-A Slows Down Meniscus Hypertrophy and Mineralisation by the Damage Mechanical Model

从损伤力学模型探究HBP-A减缓半月板肥大及矿化的分子机制

阅读:11
作者:Zongrui Yang, Yuanyuan Feng, Mingcai Zhang, Yongming Liu, Yizhe Xiong, Xiang Wang, Ying Shi, Bo Chen, Zhengming Wang, Haiya Ge, Hongsheng Zhan, Zhibi Shen, Guoqing Du

Abstract

HBP-A is the main active component of a traditional Chinese medicine Huaizhen Yanggan Capsule, for the remarkable treatment of knee osteoarthritis (KOA). This study aimed to elucidate the ameliorative effect of HBP-A on meniscus hypertrophy and mineralisation in KOA and the molecular mechanism of its action. An Hartley guinea pig model of KOA that underwent anterior cruciate ligament transection (ACLT) and a model of rat primary meniscus fibrochondrocytes (PMFs) were used to investigate the ameliorative effect of HBP-A on meniscal hypertrophy and calcification and its signal transduction mechanism of action. The results show that Guinea pig's meniscus width, as well as the area of meniscus calcification and meniscus and articular cartilage injury score, were significantly reduced in the HBP-A intervention group compared to the ACLT group. The expression levels of mtrix metalloproteinase 13 (MMP13), runt-related transcription factor 2 (Runx2), Indian hedgehog (Ihh), alkaline phosphatase (ALP), and ankylosis homologue (ANKH) at the protein and gene level significantly decreased in the HBP-A intervention group compared to the ACLT group. In vitro study, apoptosis, hypertrophy, and calcification of rat PMFs after 10% stretch force were significantly improved with HBP-A intervention. Western blot and RT-qPCR showed that hypertrophy, calcification, and p38 MAPK signalling pathway-related markers of PMFs were incredibly depressed in the HBP-A intervention group compared to the 10% stretch force group. In conclusion, HBP-A can slow down meniscus hypertrophy and mineralisation induced by abnormal mechanical loading, and its mechanism of action may be through the p38-MAPK signalling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。