Defect-mediated ferromagnetism in correlated two-dimensional transition metal phosphorus trisulfides

相关二维过渡金属磷三硫化物中的缺陷介导铁磁性

阅读:4
作者:Fengmei Wang, Nitish Mathur, Aurora N Janes, Hongyuan Sheng, Peng He, Xueli Zheng, Peng Yu, Andrew J DeRuiter, J R Schmidt, Jun He, Song Jin

Abstract

Controlling the magnetic spin states of two-dimensional (2D) van der Waals (vdW) materials with strong electronic or magnetic correlation is important for spintronic applications but challenging. Crystal defects that are often present in 2D materials such as transition metal phosphorus trisulfides (MPS3) could influence their physical properties. Here, we report the effect of sulfur vacancies on the magnetic exchange interactions and spin ordering of few-layered vdW magnetic Ni1−xCoxPS3 nanosheets. Magnetic and structural characterization in corroboration with theoretical calculations reveal that sulfur vacancies effectively suppress the strong intralayer antiferromagnetic correlation, giving rise to a weak ferromagnetic ground state in Ni1−xCoxPS3 nanosheets. Notably, the magnetic field required to tune this ferromagnetic state (<300 Oe) is much lower than the value needed to tune a typical vdW antiferromagnet (> several thousand oersted). These findings provide a previously unexplored route for controlling competing correlated states and magnetic ordering by defect engineering in vdW materials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。